Scaling Bitcoin 2016 "Retarget" • October 9th Milan, Italy

ENHANCING BITCOIN SECURITY AND PERFORMANCE WITH STRONG CONSISTENCY VIA COLLECTIVE SIGNING

Lefteris Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser and Bryan Ford EPFL

Swiss Federal Institute of Technology Lausanne

Bitcoin Blockchain

- 2
- What we have now:
 - Real-time verification is not safe (1 hour of delay)
 - Throughput is low (4 tx/sec)

Byzcoin Blockchain

- What can Byzcoin do:
 - Irrevocable transaction commitment in 20-90 sec
 - Throughput up to 974 TPS
 - Robust against double-spending, eclipsing, selfish mining
 - Light-weight client verification (suitable for mobile phones)

How?

- Use Practical Byzantine Fault Tolerance protocol to provide non-probabilistic strong consistency
- Use Collective Signing to scale PBFT and decrease latency
- Use PoW to create hybrid permissionless BFT
- Use Bitcoin-NG to increase throughput

Talk Outline

- Bitcoin and its limitations
- Strawman design: PBFTCoin
- Opening the consensus group
- From MACs to Collective Signing
- Decoupling transaction verification from leader election
- Performance Evaluation
- Future work and conclusions

The Blockchain

(Pfl

Problem Statement

- 1 In Ditagin th
- In Bitcoin there is no verifiable commitment of the system that a block will persist
 - Clients rely on probabilities to gain confidence.
 - Probability of successful fork-attack decreases exponentially

Talk Outline

- Bitcoin and its limitations
- Strawman design: PBFTCoin
- Opening the consensus group
- From MACs to Collective Signing
- Decoupling transaction verification from leader election
- Performance Evaluation
- Future work and conclusions

Strawman Design: PBFTCoin

- 3f+1 fixed "trustees" running PBFT* to withstand f failures
- Non-probabilistic strong consistency
- Low latency
 No forks/inconsistencies
 No double-spending
 *Practical Byzantine Fault Tolerance [Castro/Liskov]

Strawman Design: PBFTCoin

- Problem: Needs a static consensus group
- Problem: Scalability
 - Dense communication pattern (limits consensus group size)
 - High client-side verification cost (excludes mobile phones/loT clients)
 - Absence of third-party verifiable proofs (limits number of clients)

Talk Outline

11

- Bitcoin and its limitations
- Strawman design: PBFTCoin
- Opening the consensus group
- From MACs to Collective Signing
- Decoupling transaction verification from leader election
- Performance Evaluation
- Future work and conclusions

Opening the Consensus Group

- PoW against Sybil attacks
- One share per block
 - \circ % of shares \propto hash-power
- Window mechanism
 - Protect from inactive miners

Talk Outline

- Bitcoin and its limitations
- Strawman design: PBFTCoin
- Opening the consensus group
- From MACs to Collective Signing
- Decoupling transaction verification from leader election
- Performance Evaluation
- Future work and conclusions

From MACs to Signing

- 14
- Substitute MAC-based authentication (symmetric crypto) with public-key cryptography
 - ECDSA provides more efficiency
 - Third-party verifiable
 - PoW Blockchain as PKI
 - Enables sparser communication patterns (ring or star topologies)

From MACs to Collective Signing

- Can we get better communication patterns?
 - Multicast protocols transmit information in sub-linear steps
 - Use trees!!
- Can we allow for lightweight verification?
 - Schnorr multisignatures could be verified in constant time
 - Use signature aggregation!!
- Schnorr multisignatures + communication trees
 = Collective Signing [Syta et all, IEEE S&P '16]

CoSi

(PAL

- Efficient collective signature, verifiable as a simple signature
- For the Ed25519 curve
 - 82 bytes instead of 9KB for 144* co-signers
 - 190 bytes instead of 63KB for 1008* co-signers

* Number of ~10minute blocks in 1day/week time window

Discussion

- CoSi is not a BFT protocol
- PBFT can be implemented over two subsequent CoSi rounds
 - Prepare round
 Commit round
 block
 block
 share
 miner
 L leader

Problem Statement

- In Bitcoin ByzCoin there is no a verifiable commitment of the system that a block will persist
- 2. Throughput is limited by forks
 - Increasing block size increases fork probability
 - Liveness exacerbation

Talk Outline

- Bitcoin and its limitations
- Strawman design: PBFTCoin
- Opening the consensus group
- From MACs to Collective Signing
- Decoupling transaction verification from leader election
- Performance Evaluation
- Future work and conclusions

Bitcoin-NG [Eyal et all, NSDI '16]

20

- Makes the observation that block mining implement two distinct functionalities
 - Transaction verification
 - Leader election
- We enhance Bitcoin-NG with Byzantine consensus
 - No double-spending
 - Non-propabilistic security
 - Leader cannot misbehave

Decoupling Transaction Verification from Leader Election

- $_{\circ}$ Key blocks:
 - PoW & share value
 - \circ Leader election
- Microblocks:
 - Validating client transactions
 - o Issued by the leader

Talk Outline

22

- Bitcoin and its limitations
- Strawman design: PBFTCoin
- Opening the consensus group
- From MACs to Collective Signing
- Decoupling transaction verification from leader election
- Performance Evaluation
- Future work and conclusions

Performance Evaluation

- Experiments run on DeterLab network testbed
 - Up to 1,008* miners multiplexed atop 36 machines
 - Impose 200 ms latencies between all servers
 - Impose 35 Mbps bandwidth per miner

* 1008 = # of ~ 10 -minute key-blocks in 1-week time window

Performance Evaluation

- Key questions to evaluate:
 - What size consensus groups can ByzCoin scale to?
 - What transaction throughput can it handle?

Consensus Latency

10² Latency (sec) 10¹ Flat/MAC 0.25 MB (PBFT) \bigcirc -10⁰ Flat/CoSi 1MB -Tree/Individual ✓ Tree/CoSi (ByzCoin) $\nabla 10^{0}$ 10¹ 10² 10³ Number of Miners

Throughput

Talk Outline

- Bitcoin and its limitations
- Strawman design: PBFTCoin
- Opening the consensus group
- From MACs to Collective Signing
- Decoupling transaction verification from leader election
- Performance Evaluation
- Future work and conclusions

Challenges for Ongoing Work

- Attacker with $\geq 1/3$ of the shares
 - Switch to probabilistic consistency?
- Can currently only scale-up not scale-out
 - Split the state between different groups?
- Leader can exclude miners from the consensus
 - Instead of burning the bitcoins, donate them?

FAQ

- $_{\circ}$ What happens when an attacker gets more than 1/3?
- Does selfish mining occur in the key-block chain?
- How is the consensus group size selected?
- How do the miners make money?

Surviving 34% attacks

- Key-blocks keep being collectively signed with a needed margin of 51%
- Strong consistency is not immediate
 - Blocks will commit after 6 confirmations
 - Window starts from the last committed block
- Micro-blocks forfeit liveness, if 66% is not achieved

Defend Against Selfish Mining

The PoW chain is (almost) fair even under 34% attacks.

(P4)

Choosing Window Size

 Random sampling experiment

$$P[X \le c] = \sum_{k=0}^{c} {w \choose k} p^{k} (1-p)^{w-k}$$

- Probability that the system picks less than $c = \lfloor w/3 \rfloor$
- P>0.99

32

	1	L				
p w	12	100	144	288	1008	2016
0.25	0.842	0.972	0.990	0.999	0.999	1.000
0.30	0.723	0.779	0.832	0.902	0.989	0.999

How do the miners make money?

- And why participate?
- Coinbase profit is distributed among the active signers
- Same for microblock fees
- Miner profits more when available the full window
- Miner keeps mining to get more shares that correspond to more revenue.

Future Work

- Alternatives to PoW
- Sharding to enable scaling-out
- Incremental deployment to existing cryptocurrencies
 - Model the system on Bitcoin's adversary*?
 - How do miners discover each other?
 - Robustness against 34% attacks?

*Analysis of the Blockchain Protocol in Asynchronous Networks [Pass, Seeman, Shelat]

Conclusion

- Use Collective Signing to scale BFT protocols
- Use PoW to create hybrid permissionless BFT
- Combine the above with Bitcoin-NG
- Demonstrate experimentally its practicality
 - 1MB blocks commit in ~24sec achieve ~150TPS
 - $_{\circ}$ 32MB blocks commit in ~90sec achieve ~1000TPS
- ByzCoin increases the robustness of Bitcoin.

Thank you

36

people.epfl.ch/eleftherios.kokoriskogias

(PA

Byzcoin: Bringing it all Together

(PAL